Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Creating Mixed Reality Lab Modules for a Chemical Engineering Fluid Mechanics Lab – Work in ProgressFree, publicly-accessible full text available June 22, 2026
-
Free, publicly-accessible full text available June 22, 2026
-
Free, publicly-accessible full text available June 22, 2026
-
Energetic ionic liquids (EILs) have various industrial applications because they release chemically stored energy under certain conditions. They can avoid some environmental problems caused by traditionally used toxic fuels. EILs, which are environmentally friendly and safer, are emerging as an alternative source for hypergolic bipropellant fuels. This review focuses on the crucial thermophysical properties of the EILs. The properties of imidazolium and triazolium-based ionic liquids (ILs) are discussed here. The thermophysical properties addressed, such as glass transition temperature, viscosity, and thermal stability, are critical for designing EILs to meet the need for sustainable energy solutions. Imidazolium-based ILs have tunable physical properties making them ideal for use in energy storage while triazolium-based ILs have thermal stability and energetic potential. As a result, it is important to understand and compile thermophysical properties so they can help researchers synthesize tailored compounds with desirable characteristics, advancing their application in energy storage and propulsion technologies.more » « lessFree, publicly-accessible full text available January 9, 2026
-
Hirshfield, Laura (Ed.)In this paper we demonstrate that using mixed reality (MR) technology can innovate our chemical engineering laboratory curriculum at Prairie View A&M University, a Historically Black College/University (HBCU). Particularly, we describe the development of a MR proof of concept to carry out a traditional fluid mechanics lab – pressure drop as a function of flow through a straight-run pipe – that can allow for the possibility of remote instruction for a traditionally hands-on practicum.more » « less
-
Several carbon sequestration technologies have been proposed to utilize carbon dioxide (CO2) to produce energy and chemical compounds. However, feasible technologies have not been adopted due to the low efficiency conversion rate and high-energy requirements. Process intensification increases the process productivity and efficiency by combining chemical reactions and separation operations. In this work, we present a model of a chemical-electrochemical cyclical process that can capture carbon dioxide as a bicarbonate salt. The proposed process also produces hydrogen and electrical energy. Carbon capture is enhanced by the reaction at the cathode that displaces the equilibrium into bicarbonate production. Literature data show that the cyclic process can produce stable operation for long times by preserving ionic balance using a suitable ionic membrane that regulates ionic flows between the two half-cells. Numerical simulations have validated the proof of concept. The proposed process could serve as a novel CO2 sequestration technology while producing electrical energy and hydrogen.more » « less
An official website of the United States government
